Simple Versioning of Database Entries

Peter Seiderer

October 8, 2001

Abstract

For many internet applications user editable data is
stored in databases. Therefore it is an advantage to
provide some sort of version control to the stored in-
formation as provided by e.g. CVS, ClearCase or
SourceSafe on a per file basis. In this article a simple
way of providing part of the version control function-
ality for database information is described. For space
saving purpose a simple algorithm for delta compress-
ing is used.

1 Introduction

In the process of programming the source code is
often stored in a Version Control System like CVS,
ClearCase of SourceSafe, so you can trace back the
development path of the source code, or in case of an
mistake (e.g. a freshly introduced bug) to have the
possibility to fall back to an earlier version. In many
internet applications where user editable information
is stored in a database some sort of version control
would be of great advantage.

In the next chapter a simple solution for this prob-
lem is described. The solution uses a shadow table
to store the older versions of database table entries.

In the third chapter a simple algorithm for delta
compressing (computing the edited parts of a text) is
described. This algorithm is then used in chapter four
to introduce a space saving approach for the version
control system.

2 First approach

In figure 2 an example of a database table is shown.
The first row labeled id is the primary key, the second
row labled datal is some integer value and the third
row labeld data2 is of type varchar. Such a (empty)
table is easily created by the statement!:

CREATE TABLE tablel
(id SERIAL, datal INT, data2 VARCHAR);

Figure 1: Example database table tablel

id datal data2
1 | 314156 “some text”
2 22 “Hello World”
3 12 | “not important”

A first proach to provide a simple form of version
control for the database table tablel is to create a
shadow table via the command

CREATE TABLE shadow_tablel

(id INT, datal INT, data2 INT, version INT);

where old versions of the entries are automatically
stored by a PL/SQL function which is triggered by
an update on table entry.

Therefore first the PS/SQL function is created
which stores the old entry plus an additional version
number in the shadow table:

CREATE FUNCTION func_tablel_vc ()

1For all database examples in this text postgres version
7.1.3 was used [pos]

RETURNS OPAQUE AS °
DECLARE
v integer;
BEGIN
SELECT INTO v version FROM shadow_tablel
WHERE id = OLD.id
ORDER BY version DESC LIMIT 1;
IF v ISNULL THEN
v := 0;
ELSE
v =
END IF;
INSERT INTO shadow_tablel
VALUES (OLD.id,0LD.datal,0LD.data2,v);
RETURN NEW;
END;
> LANGUAGE ’plpgsql’;

v + 1;

The PL/SQL function is called by the following
trigger on a update:

CREATE TRIGGER trig_tablel_vc
AFTER UPDATE ON tablel
FOR EACH ROW EXECUTE
PROCEDURE func_tablel_vc();

So if the text of row two of the example is updated
to “Hello Reader” the shadow table would look like
the following:

Figure 2: Example database tables tablel and
shadow_tablel
id datal data2
1 | 314156 “some text”
2 22 “Hello Reader”
3 12 | “not important”
id | datal data2 | version
2 22 | “Hello World” 0

Note that by the use of the shadow table to store
the whole version information no change of the orig-
inal table is necessary and no adjustment of running
applications needs to be done.

3 Delta compression

For large amounts of text where only minor changes
where introduced, e.g. text editing by a user, this in
chapter 2 shown approach is very inefficient in terms
of space. It would be much better only to store the
differences between the new version and the previous
version. This is sometimes called delta compression
in the literature.

As an example take the sentence “looked there
between” which is changed to “Chia looked out
between”?.

Instead of storing the whole new sentence it would
be sufficient to store only the edited parts “Chia ”
and “out” and the information which parts are copied
from the original string as shown in figure 3.

Figure 3: Example of delta compression

base string

((lofolxTefa] [cfnTefrfe] fofelt [wleeln]

new string: clnlifal [ofolxlefa] Jofult] [olefc wlelen]

insert copy insert

[cln i [a] Fo .t]

copy

del ta:

For a detailed description on how to find such a
delta see [Bur96] or [BCD95].

4 Space saving approach

The database procedure triggered by an update de-
scribed in chapter 2 stores a whole copy of the cor-
responding database row. In this chapter a more ad-
vanced procedure is described which only stores the
delta for text entries as described in chapter 3. There-
fore two functions are used: pg_diff and pg_patch
which are realized as C functions and incorporated
via the postgres C interface:

CREATE FUNCTION pg_diff(text, text)
RETURNS bytea AS ’libpg_ci_diff.so’
LANGUAGE ’c’ WITH (isStrict);

CREATE FUNCTION pg_patch(text, bytea)

2This sentence is the beginning of chapter 34 from [Gib97].

RETURNS text AS ’1libpg_ci_diff.so’
LANGUAGE ’c’ WITH (isStrict);

The new update triggered procedure is changed
now to the following:

CREATE FUNCTION func_tablel_vc ()
RETURNS OPAQUE AS °
DECLARE
v integer;
BEGIN
SELECT INTO v version FROM shadow_tablel
WHERE id = OLD.id
ORDER BY version DESC LIMIT 1;
IF v ISNULL THEN
v := 0;
ELSE
v =
END IF;
INSERT INTO shadow_tablel
VALUES (OLD.id,0LD.datal,
pg_diff (NEW.data2,0LD.data2),v);
RETURN NEW;
END;
> LANGUAGE ’plpgsql’;

v + 1;

With this configuration the update command from
the previous example plus a additional update of the
text to “Hello Reader!” will lead to the following en-
tries in the database tables tablel and shadow_tablel:

Figure 4: Example database tables tablel and
shadow_tablel (diff)
id datal data2
1 | 314156 “some text”
2 22 | “Hello Reader!”
3 12 | “not important”
id | datal data2 | version
2 22 | “c:0:6:i:5:World” 0
2 23 “c:0:12” 1

The entry “c:0:6:i:5:World” means copy the first 6
characters from “Hello Reader” and then insert the

5 character long string “World”.

This is not a space saving example but imagine a
some kbytes long text and a user only changing some
minor typos.

The only thing remaining now is a comfortable
view on the shadow_table, so not only to show the
delta files but the whole different versions. This is
done by the following;:

CREATE FUNCTION patch_datal (integer, integer)
RETURNS VARCHAR AS °
DECLARE
i ALIAS FOR $1;
v ALIAS FOR $2;
tmp varchar;
delta RECORD;
BEGIN
SELECT INTO tmp datal FROM test
WHERE index = i;
FOR delta IN SELECT data2 FROM shadow_test
WHERE index = i
AND version >= v ORDER BY version DESC LOOP
tmp := pg_patch(tmp, delta.data2);
END LOOP;
RETURN tmp;
END;
> LANGUAGE ’plpgsql’;

CREATE VIEW view_shadow_tablel AS
SELECT id AS id,
datal as datal
patch_data2(index, version) AS data2
version AS version FROM shadow_tablel;

A SELECT * FROM view_shadow_tablel; will lead
to the following output:

Figure 5: Example database view
view_shadow_tablel

id | datal data2 | version

2 22 | “Hello Reader” 0

2 22 | “Hello Reader!” 1

5 Summary and Future Work

A simple and noninvasive method of database entry
versioning was shown. To simplify the usage for a
whole database a script for automatic generation of
the shadow tables and the corresponding views and
triggers would be helpful.

References

[BCD95] David T. Barnard, Gwen Clarke, and
Nicolas Duncan. Tree-to-tree cor-
rection for document trees. Tech-

[Bur96]

[Gib97)

[pos]

nical Report 95-372, Department of
Computing and Information Science
Queens’s University, January 1995. cite-
seer.nj.nec.com/barnard95treetotree.html.

Randal C. Burns. Differential compression:
A generalized solution for binary files. Mas-
ter’s thesis, University of California, Santa
Cruz, December 1996.

William Gibson. IDORU. The Berkley
Publishing Group, 1997.

http://www.postgresgl.org.

